

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Changes in oauthenticator

For detailed changes from the prior release, click on the version number, and
its link will bring up a GitHub listing of changes. Use git log on the
command line for details.

Unreleased [https://github.com/jupyterhub/oauthenticator/compare/0.9.0...HEAD]

0.9

0.9.0 [https://github.com/jupyterhub/oauthenticator/compare/0.8.2...0.9.0] - 2019-07-30

	switch to asyncio coroutines from tornado coroutines (requires Python 3.5)

	add GenericOAuthenticator.userdata_token_method configurable

	add GenericOAuthenticator.basic_auth configurable

	support for OpenShift 4.0 API changes

0.8

0.8.2 [https://github.com/jupyterhub/oauthenticator/compare/0.8.1...0.8.2] - 2019-04-16

	Validate login URL redirects to avoid Open Redirect issues.

0.8.1 [https://github.com/jupyterhub/oauthenticator/compare/0.8.0...0.8.1] - 2019-02-28

	Provide better error messages

	Allow auth scope to be array or strings

	GitHubOAuthenticator: More efficient org_whitelist check

	Use pytest-asyncio instead of pytest-tornado

	CILogon: New additional_username_claims config for linked identities, fallback to the primary username claim

	GitLabOAuthenticator: New project_id_whitelist config to whitelist users who have Developer+ access to the project

	GoogleOAuthenticator: Allow email domains (hosted_domain) to be a list

	Add jupyterhub-authenticator entrypoints for jupyterhub 1.0.

	Cleanup & bugfixes

0.8.0 [https://github.com/jupyterhub/oauthenticator/compare/0.7.3...0.8.0] - 2018-08-10

	Add azuread.AzureADOAuthenticator

	Add CILogonOAuthenticator.idp_whitelist and CILogonOAuthenticator.strip_idp_domain options

	Add GenericOAuthenticator.tls_verify and GenericOAuthenticator.extra_params options

	Add refresh token and scope to generic oauthenticator auth state

	Better error messages when GitHub oauth fails

	Stop normalizing mediawiki usernames, which can be case-sensitive

	Fixes for group-membership checks with GitLab

	Bugfixes in various authenticators

	Deprecate GITLAB_HOST in favor of GITLAB_URL, since we expect https:// in the url, not just the host.

0.7

0.7.3 [https://github.com/jupyterhub/oauthenticator/compare/0.7.2...0.7.3] - 2018-02-16

0.7.3 is a security fix for CVE-2018-7206.
It fixes handling of gitlab_group_whitelist when using GitLabOAuthenticator.
The same fix is backported to 0.6.2.

0.7.2 [https://github.com/jupyterhub/oauthenticator/compare/0.7.1...0.7.2] - 2017-10-27

	Fix CILogon OAuth 2 implementation. ePPN claim is used for default username
(typically institutional email).
CILogonOAuthenticator.username_claim can be used to change which field is
used for JupyterHub usernames.

	GenericOAuthenticator.login_service is now configurable.

	default to GitLab API version 4 and allow v3 via GITLAB_API_VERSION=3 environment variable.

	Add GlobusOAuthenticator.revoke_tokens_on_logout and
GlobusOAuthenticator.logout_redirect_url config for further clearing
of credentials on JupyterHub logout.

0.7.1 [https://github.com/jupyterhub/oauthenticator/compare/0.7.0...0.7.1] - 2017-10-04

	fix regression in 0.7.0 preventing authentication via providers other than GitHub, MediaWiki

0.7.0 [https://github.com/jupyterhub/oauthenticator/compare/0.6.1...0.7.0] - 2017-10-02

0.7.0 adds significant new functionality to all authenticators.

	CILogon now uses OAuth 2 instead of OAuth 1, to be more consistent with the rest.

	All OAuthenticators support auth_state when used with JupyterHub 0.8.
In every case, the auth_state is a dict with two keys: access_token and the
user-info reply identifying the user.
For instance, GitHubOAuthenticator auth_state looks like:

{
 'acces_token': 'abc123',
 'github_user': {
 'username': 'fake-user',
 'email': 'fake@email.com',
 ...
 }
}

auth_state can be passed to Spawners by defining a .pre_spawn_start method.
See examples/auth_state for an example.

	All OAuthenticators have a .scope trait, which is a list of string scopes to request.
See your OAuth provider’s documentation for what scopes you may want.
This is useful in conjunction with auth_state, which may be used to pass access tokens
to Spawners via environment variables. .scope can control what permissions those
tokens will have. In general, OAuthenticator default scopes should only have read-only access to identify users.

	GITHUB_HTTP environment variable can be used to talk to HTTP-only GitHub Enterprise deployments.

0.6

0.6.2 [https://github.com/jupyterhub/oauthenticator/compare/0.6.1...0.6.2] - 2018-02-16

0.6.2 is a security fix for CVE-2018-7206.
It fixes handling of gitlab_group_whitelist when using GitLabOAuthenticator.

0.6.1 [https://github.com/jupyterhub/oauthenticator/compare/0.6.0...0.6.1] - 2017-08-11

0.6.1 has bugfixes for new behaviors in 0.6.0

	Use .login_url and next_url from JupyterHub if defined (JupyterHub 0.8)

	Fix empty login_url where final login redirect could be omitted

	Fix mediawiki authenticator, which broke in 0.6.0

	Encode state as base64 instead of JSON, for easier passing in URLs

0.6.0 [https://github.com/jupyterhub/oauthenticator/compare/0.5.1...0.6.0] - 2017-07-25

	Support for changes in upcoming JupyterHub 0.8

	Refactor to share more code across providers

	Deprecated GITHUB_CLIENT_ID and other provider-specific environment variables
for common options.
All OAuthenticators support the same OAUTH_CLIENT_ID, OAUTH_CLIENT_SECRET, and OAUTH_CALLBACK_URL environment variables.

	New authenticators:

	auth0

	globus

	okpy

	openshift

	generic - a generic implementation that can work with any OAuth2 provider

0.5

0.5.1 [https://github.com/jupyterhub/oauthenticator/compare/0.5.0...0.5.1] - 2016-10-05

	Fixes in BitbucketOAuthenticator.check_whitelist

0.5.0 [https://github.com/jupyterhub/oauthenticator/compare/0.4.1...0.5.0] - 2016-09-02

	Add GitLabOAuthenticator

0.4

0.4.1 [https://github.com/jupyterhub/oauthenticator/compare/0.4.0...0.4.1] - 2016-05-18

	Fix typo preventing Google OAuth from working in 0.4.0

0.4.0 [https://github.com/jupyterhub/oauthenticator/compare/0.3.0...0.4.0] - 2016-05-11

	Enable username normalization (for mixed-case names on GitHub, requires JupyterHub 0.5).
This removes GitHubOAuthenticator.username_map introduced in 0.3,
because the oauth2 Authenticator has .username_map as of 0.5.

0.3 [https://github.com/jupyterhub/oauthenticator/compare/0.2.0...0.3.0] - 2016-04-20

	Add Google authenticator

	Allow specifying OAuth scope

	Add GitHubOAuthenticator.username_map for mapping GitHub usernames to system usernames.

0.2 [https://github.com/jupyterhub/oauthenticator/compare/0.1.0...0.2.0] - 2016-01-04

	Add mediawiki authenticator

0.1 - 2015-12-22

	First release

Contributing

Welcome! As a Jupyter [https://jupyter.org] project, we follow the Jupyter contributor guide [https://jupyter.readthedocs.io/en/latest/contributor/content-contributor.html].

To set up a development environment for this repository:

	Clone this repository:

 git clone https://github.com/jupyterhub/oauthenticator

	Do a development install with pip:

 cd oauthenticator
 pip install -e .

OAuthenticator

OAuth + JupyterHub Authenticator = OAuthenticator

OAuthenticator currently supports the following authentication services:

	Auth0

	Azure

	Bitbucket

	CILogon

	GitHub

	GitLab

	Globus

	Google

	MediaWiki

	Moodle

	Okpy

	OpenShift

A generic implementation, which you can use with
any provider, is also available.

Examples

For an example docker image using OAuthenticator, see the examples
directory.

Another example [https://github.com/jupyterhub/dockerspawner/tree/master/examples/oauth]
is using GitHub OAuth to spawn each user’s server in a separate docker
container.

Installation

Install with pip:

pip3 install oauthenticator

Or clone the repo and do a dev install:

git clone https://github.com/jupyterhub/oauthenticator.git
cd oauthenticator
pip3 install -e .

General setup

The first step is to tell JupyterHub to use your chosen OAuthenticator. Each
authenticator is provided in a submodule of oauthenticator, and each
authenticator has a variant with Local (e.g. LocalGitHubOAuthenticator),
which will map OAuth usernames onto local system usernames.

Set chosen OAuthenticator

In jupyterhub_config.py, add:

from oauthenticator.github import GitHubOAuthenticator
c.JupyterHub.authenticator_class = GitHubOAuthenticator

Set callback URL, client ID, and client secret

All OAuthenticators require setting a callback URL, client ID, and client
secret. You will generally get these when you register your OAuth application
with your OAuth provider. Provider-specific details are available in sections
below. When registering your oauth application with your provider, you will
probably need to specify a callback URL.
The callback URL should look like:

http[s]://[your-host]/hub/oauth_callback

where [your-host] is where your server will be running. Such as
example.com:8000.

When JupyterHub runs, these values will be retrieved from the environment variables:

$OAUTH_CALLBACK_URL
$OAUTH_CLIENT_ID
$OAUTH_CLIENT_SECRET

You can also set these values in your configuration file, jupyterhub_config.py:

c.MyOAuthenticator.oauth_callback_url = 'http[s]://[your-host]/hub/oauth_callback'
c.MyOAuthenticator.client_id = 'your-client-id'
c.MyOAuthenticator.client_secret = 'your-client-secret'

Azure Setup

Prereqs:

	Requires: PyJWT>=1.5.3

> pip3 install PyJWT

	BE SURE TO SET THE AAD_TENANT_ID environment variable

> export AAD_TENANT_ID='{AAD-TENANT-ID}'

	Sample code is provided for you in examples > azuread > sample_jupyter_config.py

	Just add the code below to your jupyterhub_config.py file

	Making sure to replace the values in '{}' with your APP, TENANT, DOMAIN, etc. values

Follow this link to create an AAD APP [https://www.netiq.com/communities/cool-solutions/creating-application-client-id-client-secret-microsoft-azure-new-portal/]

CLIENT_ID === Azure Application ID - found in Azure portal --> AD --> App Registrations --> App

TENANT_ID === Azure Directory ID - found in Azure portal --> AD --> Properties

jupyterhub_config.py:

import os
from oauthenticator.azuread import AzureAdOAuthenticator
c.JupyterHub.authenticator_class = AzureAdOAuthenticator

c.Application.log_level = 'DEBUG'

c.AzureAdOAuthenticator.tenant_id = os.environ.get('AAD_TENANT_ID')

c.AzureAdOAuthenticator.oauth_callback_url = 'http://{your-domain}/hub/oauth_callback'
c.AzureAdOAuthenticator.client_id = '{AAD-APP-CLIENT-ID}'
c.AzureAdOAuthenticator.client_secret = '{AAD-APP-CLIENT-SECRET}'

Run via:

sudo jupyterhub -f ./path/to/jupyterhub_config.py

See run.sh for an example

	Source Code

GitHub Setup

First, you’ll need to create a GitHub OAuth
application [https://github.com/settings/applications/new].

Then, add the following to your jupyterhub_config.py file:

from oauthenticator.github import GitHubOAuthenticator
c.JupyterHub.authenticator_class = GitHubOAuthenticator

You can also use LocalGitHubOAuthenticator to map GitHub accounts onto local users.

You can use your own Github Enterprise instance by setting the GITHUB_HOST environment variable.

You can set GITHUB_HTTP environment variable to true or anything if your GitHub Enterprise supports http only.

GitHub allows expanded capabilities by
adding GitHub-Specific Scopes to the requested token.

GitLab Setup

First, you’ll need to create a GitLab OAuth
application [http://docs.gitlab.com/ce/integration/oauth_provider.html].

Then, add the following to your jupyterhub_config.py file:

from oauthenticator.gitlab import GitLabOAuthenticator
c.JupyterHub.authenticator_class = GitLabOAuthenticator

You can also use LocalGitLabOAuthenticator to map GitLab accounts onto local users.

You can use your own GitLab CE/EE instance by setting the GITLAB_HOST environment
flag.

Google Setup

Visit https://console.developers.google.com to set up an OAuth client ID and secret. See Google’s documentation [https://developers.google.com/identity/protocols/OAuth2] on how to create OAUth 2.0 client credentials. The Authorized JavaScript origins should be set to to your hub’s public address while Authorized redirect URIs should be set to the same but followed by /hub/oauth_callback.

Then, add the following to your jupyterhub_config.py file:

from oauthenticator.google import GoogleOAuthenticator
c.JupyterHub.authenticator_class = GoogleOAuthenticator

By default, any domain is allowed to login but you can restrict authorized domains with a list (recommended):

c.GoogleOAuthenticator.hosted_domain = ['mycollege.edu', 'mycompany.com']

You can customize the sign in button text (optional):

c.GoogleOAuthenticator.login_service = 'My College'

OpenShift Setup

In case you have an OpenShift deployment with OAuth properly configured (see the
following sections for a quick reference), you should set the client ID and
secret by the environment variables OAUTH_CLIENT_ID, OAUTH_CLIENT_SECRET and
OAUTH_CALLBACK_URL.

Prior to OpenShift 4.0, the OAuth provider and REST API URL endpoints can
be specified by setting the single environment variable OPENSHIFT_URL. From
OpenShift 4.0 onwards, these two endpoints are on different hosts. You need to
set OPENSHIFT_AUTH_API_URL to the OAuth provider URL, and
OPENSHIFT_REST_API_URL to the REST API URL endpoint.

The OAUTH_CALLBACK_URL should match http[s]://[your-app-route]/hub/oauth_callback

Global OAuth (admin)

As a cluster admin, you can create a global OAuth client [https://docs.openshift.org/latest/architecture/additional_concepts/authentication.html#oauth-clients]
in your OpenShift cluster creating a new OAuthClient object using the API:

$ oc create -f - <<EOF
apiVersion: v1
kind: OAuthClient
metadata:
 name: <OAUTH_CLIENT_ID>
redirectURIs:
- <OUAUTH_CALLBACK_URL>
secret: <OAUTH_SECRET>
EOF

Service Accounts as OAuth Clients

As a project member, you can use the Service Accounts as OAuth Clients [https://docs.openshift.org/latest/architecture/additional_concepts/authentication.html#service-accounts-as-oauth-clients]
scenario. This gives you the possibility of defining clients associated with
service accounts. You just need to create the service account with the
proper annotations:

$ oc create -f - <<EOF
apiVersion: v1
kind: ServiceAccount
metadata:
 name: <name>
 annotations:
 serviceaccounts.openshift.io/oauth-redirecturi.1: '<OUAUTH_CALLBACK_URL>'
EOF

In this scenario your OAUTH_CLIENT_ID will be system:serviceaccount:<serviceaccount_namespace>:<serviceaccount_name>,
the OAUTH_CLIENT_SECRET is the API token of the service account (oc sa get-token <serviceaccount_name>)
and the OAUTH_CALLBACK_URL is the value of the annotation serviceaccounts.openshift.io/oauth-redirecturi.1.
More details can be found in the upstream documentation.

OkpyAuthenticator

Okpy [https://github.com/Cal-CS-61A-Staff/ok-client] is an auto-grading tool that
is widely used in UC Berkeley EECS and Data Science courses. This authenticator
enhances its support for Jupyter Notebook by enabling students to authenticate with
the Hub [http://datahub.berkeley.edu/hub/home] first and saving relevant user states
to the env (the feature is redacted until a secure state saving mechanism is developed).

Configuration

If you want to authenticate your Hub using OkpyAuthenticator, you need to specify
the authenticator class in your jupyterhub_config.py file:

from oauthenticator.okpy import OkpyOAuthenticator
c.JupyterHub.authenticator_class = OkpyOAuthenticator

and set your OAUTH_ environment variables.

Globus Setup

Visit https://developers.globus.org/ to set up your app. Ensure Native App is
unchecked and make sure the callback URL looks like:

https://[your-host]/hub/oauth_callback

Set scopes for authorization and transfer. The defaults include:

openid profile urn:globus:auth:scope:transfer.api.globus.org:all

Set the above settings in your jupyterhub_config:

Tell JupyterHub to create system accounts
from oauthenticator.globus import LocalGlobusOAuthenticator
c.JupyterHub.authenticator_class = LocalGlobusOAuthenticator
c.LocalGlobusOAuthenticator.enable_auth_state = True
c.LocalGlobusOAuthenticator.oauth_callback_url = 'https://[your-host]/hub/oauth_callback'
c.LocalGlobusOAuthenticator.client_id = '[your app client id]'
c.LocalGlobusOAuthenticator.client_secret = '[your app client secret]'

Alternatively you can set env variables for the following: OAUTH_CALLBACK_URL, OAUTH_CLIENT_ID,
and OAUTH_CLIENT_SECRET. Setting JUPYTERHUB_CRYPT_KEY is required, and can be generated
with OpenSSL: openssl rand -hex 32

You are all set by this point! Be sure to check below for tweaking settings
related to User Identity, Transfer, and additional security.

User Identity

By default, all users are restricted to their Globus IDs (example@globusid.org)
with the default Jupyterhub config:

c.GlobusOAuthenticator.identity_provider = 'globusid.org'

If you want to use a Linked Identity such as malcolm@universityofindependence.edu,
go to your App Developer page [http://developers.globus.org] and set
Required Identity Provider for your app to <Your University>, and set the
following in the config:

c.GlobusOAuthenticator.identity_provider = 'universityofindependence.edu'

Globus Scopes and Transfer

The default configuration will automatically setup user environments with tokens,
allowing them to start up python notebooks and initiate Globus Transfers. If you
want to transfer data onto your JupyterHub server, it’s suggested you install
Globus Connect Server [https://docs.globus.org/globus-connect-server-installation-guide/#install_section] and add the globus_local_endpoint uuid below. If you want
to change other behavior, you can modify the defaults below:

Allow Refresh Tokens in user notebooks. Disallow these for increased security,
allow them for better usability.
c.LocalGlobusOAuthenticator.allow_refresh_tokens = True
Default scopes are below if unspecified. Add a custom transfer server if you have one.
c.LocalGlobusOAuthenticator.scope = ['openid', 'profile', 'urn:globus:auth:scope:transfer.api.globus.org:all']
Default tokens excluded from being passed into the spawner environment
c.LocalGlobusOAuthenticator.exclude_tokens = ['auth.globus.org']
If the JupyterHub server is an endpoint, for convenience the endpoint id can be
set here. It will show up in the notebook kernel for all users as 'GLOBUS_LOCAL_ENDPOINT'.
c.LocalGlobusOAuthenticator.globus_local_endpoint = '<Your Local JupyterHub UUID>'
Set a custom logout URL for your identity provider
c.LocalGlobusOAuthenticator.logout_redirect_url = 'https://auth.globus.org/v2/web/logout'
For added security, revoke all service tokens when users logout. (Note: users must start
a new server to get fresh tokens, logging out does not shut it down by default)
c.LocalGlobusOAuthenticator.revoke_tokens_on_logout = False

If you only want to authenticate users with their Globus IDs but don’t want to
allow them to do transfers, you can remove urn:globus:auth:scope:transfer.api.globus.org:all.
Conversely, you can add an additional scope for another transfer server if you wish.

Use c.GlobusOAuthenticator.exclude to prevent tokens from being passed into a
users environment. By default, auth.globus.org is excluded but transfer.api.globus.org
is allowed. If you want to disable transfers, modify c.GlobusOAuthenticator.scope
instead of c.GlobusOAuthenticator.exclude to avoid procuring unnecessary tokens.

Moodle Setup

First install the OAuth2 Server Plugin [https://github.com/projectestac/moodle-local_oauth] for Moodle.

Use the GenericOAuthenticator for Jupyterhub by editing your jupyterhub_config.py accordingly:

from oauthenticator.generic import GenericOAuthenticator
c.JupyterHub.authenticator_class = GenericOAuthenticator

c.GenericOAuthenticator.oauth_callback_url = 'http://YOUR-JUPYTERHUB.com/hub/oauth_callback'
c.GenericOAuthenticator.client_id = 'MOODLE-CLIENT-ID'
c.GenericOAuthenticator.client_secret = 'MOODLE-CLIENT-SECRET-KEY'
c.GenericOAuthenticator.login_service = 'NAME-OF-SERVICE'
c.GenericOAuthenticator.userdata_url = 'http://YOUR-MOODLE-DOMAIN.com/local/oauth/user_info.php'
c.GenericOAuthenticator.token_url = 'http://YOUR-MOODLE-DOMAIN.com/local/oauth/token.php'
c.GenericOAuthenticator.userdata_method = 'POST'
c.GenericOAuthenticator.extra_params = {
 'scope': 'user_info',
 'client_id': 'MOODLE-CLIENT-ID',
 'client_secret': 'MOODLE-CLIENT-SECRET-KEY'}

And set your environmental variable OAUTH2_AUTHORIZE_URL to:

http://YOUR-MOODLE-DOMAIN.com/local/oauth/login.php?client_id=MOODLE-CLIENT-ID&response_type=code

CILogon-specific scopes

CILogon scopes [http://www.cilogon.org/oidc] can
be used to extend the CILogon OAuthenticator. By overriding the scope
list in the authenticator, additional features can be enabled for
specific deployment needs.

The additional fields exposed by expanded scope are all stored in the
authenticator’s auth_state structure, so you’ll need to enable
auth_state and install the Python cryptography package to be able to
use these.

GitHub-specific scopes

GitHub scopes [https://developer.github.com/apps/building-integrations/setting-up-and-registering-oauth-apps/about-scopes-for-oauth-apps/] may
be used to extend the GitHub OAuthenticator. By overriding the scope
list in the authenticator, additional features can be enabled for
specific deployment needs.

Example GitHub scopes

The following GitHub scopes may be suitable for certain use cases:

read:org grants access to the users’ organizations. This is handy if
you want to use GitHub organizations in your backend environment as Unix
groups for collaboration purposes. Having globally consistent UIDs
(from the GitHub ID) and GIDs (from the organization IDs) makes access
permissions on shared storage much easier.

public_repo allows “trusted users” read and write privileges for
public repositories. If you want to automatically provision git
pushes to GitHub, you can accomplish this by passing a token with this
scope to your Lab or classic Notebook instance.

repo does the same for private repositories too.

user:email allows the authenticator to determine email addresses even
if they are marked private. Having access to email addresses, in
conjunction with read/write repository access, allows preconfiguring the
user’s git configuration for GitHub pushes without any required action
by the user.

The additional fields exposed by expanded scope are all stored in the
authenticator’s auth_state structure, so you’ll need to enable
auth_state and install the Python cryptography package to be able to
use these.

We currently use the following fields:

	id is an integer set to the GitHub account ID.

	login is the GitHub username

	name is the full name GitHub knows the user by.

	email is the publicly visible email address (if any) for the user.

	access_token is the token used to authenticate to GitHub.

	``

To use this expanded user information, you will need to subclass your
current spawner and modify the subclass to read these fields from
auth_state and then use this information to provision your Notebook or
Lab user.

 Scopes may be added to the GitLab OAuthenticator by overriding the
scope list, like so:

c.GitLabOAuthenticator.scope = ['read_user']

The following scopes are implemented in GitLab 11.x:

api: Grants complete read/write access to the API, including all
groups and projects. If no other scope is requested, this is the default.
This is a very powerful set of permissions, it is recommended to limit
the scope of authentication to something other than API.

read_user: Grants read-only access to the authenticated user’s
profile through the /user API endpoint, which includes username,
public email, and full name. Also grants access to read-only
API endpoints under /users.

read_repository: Grants read-only access to repositories on
private projects using Git-over-HTTP (not using the API).

write_repository: Grants read-write access to repositories
on private projects using Git-over-HTTP (not using the API).

read_registry: Grants read-only access to container registry
images on private projects.

sudo: Grants permission to perform API actions as any user
in the system, when authenticated as an admin user.

openid: Grants permission to authenticate with GitLab using
OpenID Connect. Also gives read-only access to the user’s
profile and group memberships.

profile: Grants read-only access to the user’s profile data
using OpenID Connect.

email: Grants read-only access to the user’s primary email
address using OpenID Connect.

Providing GitHub API access via auth_state

JupyterHub 0.8 adds the ability to persist authentication state.
OAuthenticator 0.7 adds support for auth_state to all Authenticators.
Additional configuration is required in order to specify how and what information should be passed to the users’ containers from this information.

Included is an example jupyterhub_config.py for specifying some of these options
and an example notebook that can be run in the user environment
to demonstrate uploading a gist.

The jupyterhub_config.py does:

	enable GitHub authentication

	enable persisted auth state

	request write-access to gists via GitHubAuthenticator.scope

	pass the GitHub API token and user info via GITHUB_ environment variables

	launch users with docker

Running the example

	register GitHub oauth application

	fill out client secret and client id in ./env

	source ./env to get github environment variables

	jupyterhub

OAuthenticator

Example of running JupyterHub [https://github.com/jupyterhub/jupyterhub]
with GitHub OAuth [https://developer.github.com/v3/oauth/] for authentication.

setup

Edit the file called userlist to include one GitHub user name per line.
If that user should be an admin (you!), add admin after a space.

For example:

mal admin
zoe admin
wash
inara admin
kaylee
jayne
simon
river

build

Build the container with:

docker build -t jupyterhub-oauth .

ssl

To run the server on HTTPS, put your ssl key and cert in ssl/ssl.key and
ssl/ssl.cert.

run

Add your oauth client id, client secret, and callback URL to the env file.
Once you have built the container, you can run it with:

docker run -it -p 8000:8000 --env-file=env jupyterhub-oauth

Which will run the Jupyter server.

 If you want the server to run with SSL,
put an SSL cert here in ssl.cert
and an SSL key in ssl.key

 _static/comment.png

_static/down-pressed.png

_static/comment-bright.png

_static/comment-close.png

_static/file.png

_static/minus.png

_static/down.png

_static/plus.png

_static/ajax-loader.gif

_static/up-pressed.png

nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/up.png

